Electronic Theses and Dissertation
Universitas Syiah Kuala
SKRIPSI
SISTEM MONITORING CERDAS KANDUNGAN NPK DAN PH TANAH PADA PERKEBUNAN KOPI BERBASIS INTERNET OF THINGS MENGGUNAKAN APLIKASI ARECA
Pengarang
AL-GHIFARI - Personal Name;
Dosen Pembimbing
Agus Arip Munawar - 198008092003121003 - Dosen Pembimbing I
Devianti - 197105101999032004 - Dosen Pembimbing II
Indera Sakti Nasution - 198007042005011006 - Penguji
Ichwana - 197301031998022001 - Penguji
Safrizal - 197510302006041001 - Penguji
Nomor Pokok Mahasiswa
2005106010083
Fakultas & Prodi
Fakultas Pertanian / Teknik Pertanian (S1) / PDDIKTI : 41201
Subject
Kata Kunci
Penerbit
Banda Aceh : fakultas teknik pertanian., 2025
Bahasa
No Classification
-
Literature Searching Service
Hard copy atau foto copy dari buku ini dapat diberikan dengan syarat ketentuan berlaku, jika berminat, silahkan hubungi via telegram (Chat Services LSS)
Indonesia, khususnya Aceh, dikenal sebagai salah satu penghasil kopi berkualitas tinggi, seperti kopi Arabika Gayo yang memiliki nilai ekonomi dan reputasi global. Namun, produktivitas dan keberlanjutan perkebunan kopi sering terganggu oleh kurangnya sistem monitoring yang efisien, menyebabkan petani mengandalkan metode manual yang kurang akurat. Teknologi Internet of Things (IoT) menawarkan solusi untuk \ pemantauan real-time berbagai parameter tanah, termasuk kandungan NPK dan pH, guna mendukung pengambilan keputusan berbasis data. Penelitian ini bertujuan untuk merancang dan mengembangkan sistem monitoring cerdas berbasis IoT dengan memanfaatkan aplikasi Areca sebagai antarmuka pengguna, serta panel surya sebagai sumber daya, sehingga memungkinkan pemantauan kandungan hara tanah secara efisien di perkebunan kopi.
Penelitian ini dilaksanakan di Laboratorium Tanah dan Tanaman serta Laboratorium Instrumentasi dan Energi Fakultas Pertanian Universitas Syiah Kuala. Sistem monitoring dirancang menggunakan mikrokontroler ESP32, sensor NPK berbasis RS485, dan aplikasi Areca sebagai antarmuka pengguna. Prosedur penelitian meliputi perancangan perangkat keras dan lunak, validasi data sensor, serta pengujian sistem. Validasi data dilakukan dengan membandingkan hasil sensor dengan data uji laboratorium menggunakan Mean Absolute Percentage Error (MAPE). Pengujian sistem mencakup evaluasi delay pengiriman data, ketahanan baterai, dan efisiensi panel surya untuk memastikan kinerja optimal dalam berbagai kondisi operasional.
Implementasi sistem monitoring dilakukan dengan mengintegrasikan perangkat keras, termasuk ESP32 sebagai mikrokontroler, sensor NPK berbasis RS485 untuk membaca kandungan tanah, panel surya 8W 6V sebagai sumber daya, dan baterai lithium untuk penyimpanan energi. Sistem dirancang untuk mengirimkan data real-time ke aplikasi Areca yang digunakan sebagai antarmuka visualisasi. Proses validasi data sensor dilakukan menggunakan lima sampel tanah dengan membandingkan hasil sensor terhadap data uji laboratorium dan alat ukur standar. Hasil pengukuran menunjukkan nilai MAPE yang bervariasi untuk setiap parameter. Pada parameter nitrogen (N), nilai MAPE berkisar antara
11,76% hingga 18,18%, fosfor (P) antara 20,79% hingga 27,54%, dan kalium (K) antara 12,55% hingga 20,29%, menunjukkan akurasi baik hingga cukup. Parameter lain, seperti pH tanah, memiliki MAPE sebesar 8,31% hingga 9,82%, kelembaban 2,75% hingga 5,32%, suhu 2,1% hingga 2,56%, dan electrical conductivity (EC) 4,59% hingga 7,26, dengan kategori akurasi sangat baik. Sistem mampu mengirimkan data dengan delay antara 0 hingga 4 detik, tergantung interval pengiriman yang ditentukan. Selain itu, pengujian panel surya menunjukkan bahwa energi yang dihasilkan dapat mengisi daya baterai. Pengujian ketahanan baterai mencatat bahwa sistem dapat beroperasi selama lebih dari 83 jam 14 menit
tanpa pengisian ulang.
Indonesia, especially Aceh, is known as one of the world's leading producers of high-quality coffee, such as Gayo Arabica coffee, which has a global economic value and reputation. such as Gayo Arabica coffee, which has economic value and a global reputation. However, productivity and sustainability of coffee plantations are often compromised by the lack of an efficient monitoring system, causing farmers to rely on less efficient manual methods. monitoring system, causing farmers to rely on less accurate manual methods. accurate manual methods. Internet of Things (IoT) technology offers a solution for real-time monitoring of various soil parameters, including NPK content and pH, to support data-driven decision-making. data-based decision-making. This research aims to design and develop an IoT-based intelligent monitoring system by utilizing the Areca application as the user interface, as well as a solar panel as a power source, thus enabling efficient monitoring of soil nutrient content in efficient monitoring of soil nutrient content in coffee plantations. This research was conducted at the Soil and Crop Laboratory and the Instrumentation and Energy Laboratory of the Faculty of Agriculture, Syiah Kuala University. Monitoring system monitoring system was designed using ESP32 microcontroller, RS485-based NPK sensor, and Areca application as the user interface. Areca application as the user interface. Research procedures include hardware and software design hardware and software design, sensor data validation, and system testing. Data validation is done by comparing sensor results with laboratory test data using Mean Absolute Percentage Error (MAPE). Percentage Error (MAPE). System testing includes evaluation of data transmission delay, battery life, and solar panel efficiency to ensure optimum performance in a various operational conditions. Implementation of the monitoring system is done by integrating the hardware, including the ESP32 as a microcontroller, RS485-based NPK sensor to read soil soil content, 8W 6V solar panel as a power source, and lithium battery for energy storage. energy storage. The system is designed to transmit real-time data to the Areca app application which is used as the visualization interface. The sensor data validation process was conducted using five soil samples by comparing the sensor results to laboratory test data and standard measuring instruments. laboratory test data and standard measuring instruments. The measurement results showed MAPE values that values vary for each parameter. In the nitrogen (N) parameter, the MAPE value ranged from 11.76% to 18.18%, phosphorus (P) between 20.79% to 27.54%, and potassium (K) between 12.55% to 20.29%, indicating good to fair accuracy. Other parameters, such as soil pH soil, had a MAPE of 8.31% to 9.82%, moisture of 2.75% to 5.32%, temperature of 2.1% to 2.56%, and electrical conductivity (EC) of 4.59% to 7.26, with a very good accuracy category. The system is capable of sending data with a delay between 0 to 4 seconds, depending on the specified sending interval. In addition, the solar panel test shows that the energy produced can charge the battery. Testing battery endurance testing noted that the system can operate for more than 83 hours and 14 minutes without recharging. without recharging.
MONITORING SUHU DAN KELEMBAPAN DALAM RUANGAN SECARA REAL TIME BERBASIS INTERNET OF THINGS MENGGUNAKAN APLIKASI BLYNK (Farijal Fadhil, 2024)
SISTEM MONITORING 3-DOF SOLAR TRACKER PANEL SURYA BERBASIS INTERNET OF THINGS (IOT) (YASIN IRAWAN, 2023)
RANCANG BANGUN SISTEM MONITORING BATERAI SEBAGAI BACKUP POWER SUPPLY DC DI GARDU INDUK BANDA ACEH BERBASIS IOT (ERY AZRA, 2024)
ALAT PENYIRAM OTOMATIS BERBASIS INTERNET OF THINGS (IOT) MENGGUNAKAN APLIKASI VIRTUINO PADA KANGKUNG DARAT (IPOMOEA REPTANS P.) (Mutia Rizky Iskandar, 2019)
DESAIN PERANGKAT MONITORING FAKTOR DAYA PADA SISTEM PV ON-GRID BERBASIS IOT (Noprida Sari, 2020)