Electronic Theses and Dissertation
Universitas Syiah Kuala
NULL
KINERJA SISTEM DETEKSI KANKER PAYUDARA BERDASARKAN REGION OF INTEREST (ROI) DAN MINIMALISASI BLOK SHUFFLENET
Pengarang
Rizka Ramadhana - Personal Name;
Dosen Pembimbing
Nomor Pokok Mahasiswa
1904205010010
Fakultas & Prodi
Fakultas Teknik / Teknik Elektro (S2) / PDDIKTI : 20101
Subject
Kata Kunci
Penerbit
Banda Aceh : Universitas Syiah Kuala., 2021
Bahasa
Indonesia
No Classification
-
Literature Searching Service
Hard copy atau foto copy dari buku ini dapat diberikan dengan syarat ketentuan berlaku, jika berminat, silahkan hubungi via telegram (Chat Services LSS)
ABSTRAK
Kanker payudara merupakan salah satu penyebab kematian pada wanita. Maka dari itu sistem pendeteksian dini pada penyakit kanker payudara sangat dibutuhkan. Sistem yang unggul digunakan untuk deteksi kanker payudara yaitu adalah Convolutional Neural Network (CNN). ShuffleNet merupakan salah satu model ringan CNN yang dapat bekerja pada multiplatform. Akan tetapi, ShuffleNet belum mendapatkan akurasi maksimal pada citra termal. Oleh karena itu, penelitian ini bertujuan untuk meningkatkan kinerja sistem deteksi kanker menggunakan CNN dengan melakukan segmentasi pada citra termal payudara. Kemudian dilakukan minimalisasi blok ShuffleNet untuk efisiensi model. Segmentasi dilakukan menggunakan nilai ambang dari intensitas profil citra untuk meningkatkan kinerja klasifikasi. ShuffleNet menghasilkan akurasi 100% dalam klasifikasi citra termal payudara tersegmentasi. Klasifikasi dilanjutkan dengan pengurangan hingga delapan blok bagian arsitektur ShuffleNet. Model ini dinamakan MShuffleNet. Hasil penelitian menunjukkan bahwa segmentasi citra termal meningkatkan akurasi ShuffleNet menjadi 100%. Selain itu, penelitian menunjukkan bahwa pengurangan hingga tiga blok bagian model MShuffleNet masih menghasilkan kinerja klasifikasi dengan nilai akurasi 100%.
Kata Kunci: citra termal payudara, segmentasi, profil intensitas, deep learning, MShuffleNet
Tidak Tersedia Deskripsi
DETEKSI DINI KANKER PAYUDARA BERBASIS TERMOGRAFI DAN DEEP LEARNING (Roslidar, 2022)
DETEKSI KANKER PAYUDARA BERBASIS FITUR CITRA TERMAL DAN KLASIFIKASI K-NEAREST NEIGHBOR (KNN) (Mentari Bella Al Rasyid, 2019)
GAMBARAN PENGETAHUAN SISWI SMAN IO FAJAR HARAPAN BANDA ACEH TENTANG TUMOR PAYUDARA DAN CARA MENDETEKSINYA (Yeni Wulandari, 2023)
HUBUNGAN PENGETAHUAN KANKER PAYUDARA DENGAN PERILAKU PEMERIKSAAN PAYUDARA SENDIRI (SADARI) (, 2023)
HUBUNGAN ANTARA TINGKAT PENGETAHUAN REMAJA PUTRI TENTANG KANKER PAYUDARA DENGAN PERILAKU SADARI DI SMA N 4 BANDA ACEH TAHUN 2012 (Rahmi Muhammad Ali, 2023)